p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.608C24, C24.410C23, C22.3822+ 1+4, C22.2852- 1+4, (C2×D4).142D4, C23.69(C2×D4), C2.65(D4⋊6D4), C23.81(C4○D4), C2.113(D4⋊5D4), C23.7Q8⋊96C2, C23.23D4⋊95C2, C23.11D4⋊92C2, C23.10D4⋊91C2, C2.48(C23⋊3D4), (C22×C4).186C23, (C23×C4).467C22, C23.8Q8⋊111C2, C22.417(C22×D4), (C22×D4).243C22, C23.81C23⋊93C2, C23.83C23⋊84C2, C2.70(C22.32C24), C2.C42.314C22, C2.70(C22.33C24), C2.20(C22.56C24), C2.86(C22.47C24), (C2×C4).422(C2×D4), (C2×C4⋊D4).47C2, (C2×C4).432(C4○D4), (C2×C4⋊C4).421C22, C22.470(C2×C4○D4), (C2×C22.D4)⋊41C2, (C2×C22⋊C4).274C22, SmallGroup(128,1440)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.608C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=g2=1, f2=ba=ab, ac=ca, ede=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
Subgroups: 612 in 284 conjugacy classes, 96 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C22.D4, C23×C4, C22×D4, C23.7Q8, C23.8Q8, C23.23D4, C23.10D4, C23.11D4, C23.81C23, C23.83C23, C2×C4⋊D4, C2×C22.D4, C23.608C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C23⋊3D4, C22.32C24, C22.33C24, D4⋊5D4, D4⋊6D4, C22.47C24, C22.56C24, C23.608C24
(1 20)(2 17)(3 18)(4 19)(5 13)(6 14)(7 15)(8 16)(9 64)(10 61)(11 62)(12 63)(21 28)(22 25)(23 26)(24 27)(29 33)(30 34)(31 35)(32 36)(37 41)(38 42)(39 43)(40 44)(45 50)(46 51)(47 52)(48 49)(53 58)(54 59)(55 60)(56 57)
(1 18)(2 19)(3 20)(4 17)(5 15)(6 16)(7 13)(8 14)(9 62)(10 63)(11 64)(12 61)(21 26)(22 27)(23 28)(24 25)(29 35)(30 36)(31 33)(32 34)(37 43)(38 44)(39 41)(40 42)(45 52)(46 49)(47 50)(48 51)(53 60)(54 57)(55 58)(56 59)
(1 22)(2 23)(3 24)(4 21)(5 12)(6 9)(7 10)(8 11)(13 63)(14 64)(15 61)(16 62)(17 26)(18 27)(19 28)(20 25)(29 44)(30 41)(31 42)(32 43)(33 40)(34 37)(35 38)(36 39)(45 58)(46 59)(47 60)(48 57)(49 56)(50 53)(51 54)(52 55)
(1 46)(2 50)(3 48)(4 52)(5 44)(6 39)(7 42)(8 37)(9 36)(10 31)(11 34)(12 29)(13 40)(14 43)(15 38)(16 41)(17 45)(18 49)(19 47)(20 51)(21 55)(22 59)(23 53)(24 57)(25 54)(26 58)(27 56)(28 60)(30 62)(32 64)(33 63)(35 61)
(1 37)(2 35)(3 39)(4 33)(5 55)(6 49)(7 53)(8 51)(9 56)(10 50)(11 54)(12 52)(13 60)(14 48)(15 58)(16 46)(17 31)(18 43)(19 29)(20 41)(21 40)(22 34)(23 38)(24 36)(25 30)(26 42)(27 32)(28 44)(45 61)(47 63)(57 64)(59 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(5 15)(6 16)(7 13)(8 14)(9 62)(10 63)(11 64)(12 61)(29 33)(30 34)(31 35)(32 36)(37 41)(38 42)(39 43)(40 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)
G:=sub<Sym(64)| (1,20)(2,17)(3,18)(4,19)(5,13)(6,14)(7,15)(8,16)(9,64)(10,61)(11,62)(12,63)(21,28)(22,25)(23,26)(24,27)(29,33)(30,34)(31,35)(32,36)(37,41)(38,42)(39,43)(40,44)(45,50)(46,51)(47,52)(48,49)(53,58)(54,59)(55,60)(56,57), (1,18)(2,19)(3,20)(4,17)(5,15)(6,16)(7,13)(8,14)(9,62)(10,63)(11,64)(12,61)(21,26)(22,27)(23,28)(24,25)(29,35)(30,36)(31,33)(32,34)(37,43)(38,44)(39,41)(40,42)(45,52)(46,49)(47,50)(48,51)(53,60)(54,57)(55,58)(56,59), (1,22)(2,23)(3,24)(4,21)(5,12)(6,9)(7,10)(8,11)(13,63)(14,64)(15,61)(16,62)(17,26)(18,27)(19,28)(20,25)(29,44)(30,41)(31,42)(32,43)(33,40)(34,37)(35,38)(36,39)(45,58)(46,59)(47,60)(48,57)(49,56)(50,53)(51,54)(52,55), (1,46)(2,50)(3,48)(4,52)(5,44)(6,39)(7,42)(8,37)(9,36)(10,31)(11,34)(12,29)(13,40)(14,43)(15,38)(16,41)(17,45)(18,49)(19,47)(20,51)(21,55)(22,59)(23,53)(24,57)(25,54)(26,58)(27,56)(28,60)(30,62)(32,64)(33,63)(35,61), (1,37)(2,35)(3,39)(4,33)(5,55)(6,49)(7,53)(8,51)(9,56)(10,50)(11,54)(12,52)(13,60)(14,48)(15,58)(16,46)(17,31)(18,43)(19,29)(20,41)(21,40)(22,34)(23,38)(24,36)(25,30)(26,42)(27,32)(28,44)(45,61)(47,63)(57,64)(59,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (5,15)(6,16)(7,13)(8,14)(9,62)(10,63)(11,64)(12,61)(29,33)(30,34)(31,35)(32,36)(37,41)(38,42)(39,43)(40,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)>;
G:=Group( (1,20)(2,17)(3,18)(4,19)(5,13)(6,14)(7,15)(8,16)(9,64)(10,61)(11,62)(12,63)(21,28)(22,25)(23,26)(24,27)(29,33)(30,34)(31,35)(32,36)(37,41)(38,42)(39,43)(40,44)(45,50)(46,51)(47,52)(48,49)(53,58)(54,59)(55,60)(56,57), (1,18)(2,19)(3,20)(4,17)(5,15)(6,16)(7,13)(8,14)(9,62)(10,63)(11,64)(12,61)(21,26)(22,27)(23,28)(24,25)(29,35)(30,36)(31,33)(32,34)(37,43)(38,44)(39,41)(40,42)(45,52)(46,49)(47,50)(48,51)(53,60)(54,57)(55,58)(56,59), (1,22)(2,23)(3,24)(4,21)(5,12)(6,9)(7,10)(8,11)(13,63)(14,64)(15,61)(16,62)(17,26)(18,27)(19,28)(20,25)(29,44)(30,41)(31,42)(32,43)(33,40)(34,37)(35,38)(36,39)(45,58)(46,59)(47,60)(48,57)(49,56)(50,53)(51,54)(52,55), (1,46)(2,50)(3,48)(4,52)(5,44)(6,39)(7,42)(8,37)(9,36)(10,31)(11,34)(12,29)(13,40)(14,43)(15,38)(16,41)(17,45)(18,49)(19,47)(20,51)(21,55)(22,59)(23,53)(24,57)(25,54)(26,58)(27,56)(28,60)(30,62)(32,64)(33,63)(35,61), (1,37)(2,35)(3,39)(4,33)(5,55)(6,49)(7,53)(8,51)(9,56)(10,50)(11,54)(12,52)(13,60)(14,48)(15,58)(16,46)(17,31)(18,43)(19,29)(20,41)(21,40)(22,34)(23,38)(24,36)(25,30)(26,42)(27,32)(28,44)(45,61)(47,63)(57,64)(59,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (5,15)(6,16)(7,13)(8,14)(9,62)(10,63)(11,64)(12,61)(29,33)(30,34)(31,35)(32,36)(37,41)(38,42)(39,43)(40,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60) );
G=PermutationGroup([[(1,20),(2,17),(3,18),(4,19),(5,13),(6,14),(7,15),(8,16),(9,64),(10,61),(11,62),(12,63),(21,28),(22,25),(23,26),(24,27),(29,33),(30,34),(31,35),(32,36),(37,41),(38,42),(39,43),(40,44),(45,50),(46,51),(47,52),(48,49),(53,58),(54,59),(55,60),(56,57)], [(1,18),(2,19),(3,20),(4,17),(5,15),(6,16),(7,13),(8,14),(9,62),(10,63),(11,64),(12,61),(21,26),(22,27),(23,28),(24,25),(29,35),(30,36),(31,33),(32,34),(37,43),(38,44),(39,41),(40,42),(45,52),(46,49),(47,50),(48,51),(53,60),(54,57),(55,58),(56,59)], [(1,22),(2,23),(3,24),(4,21),(5,12),(6,9),(7,10),(8,11),(13,63),(14,64),(15,61),(16,62),(17,26),(18,27),(19,28),(20,25),(29,44),(30,41),(31,42),(32,43),(33,40),(34,37),(35,38),(36,39),(45,58),(46,59),(47,60),(48,57),(49,56),(50,53),(51,54),(52,55)], [(1,46),(2,50),(3,48),(4,52),(5,44),(6,39),(7,42),(8,37),(9,36),(10,31),(11,34),(12,29),(13,40),(14,43),(15,38),(16,41),(17,45),(18,49),(19,47),(20,51),(21,55),(22,59),(23,53),(24,57),(25,54),(26,58),(27,56),(28,60),(30,62),(32,64),(33,63),(35,61)], [(1,37),(2,35),(3,39),(4,33),(5,55),(6,49),(7,53),(8,51),(9,56),(10,50),(11,54),(12,52),(13,60),(14,48),(15,58),(16,46),(17,31),(18,43),(19,29),(20,41),(21,40),(22,34),(23,38),(24,36),(25,30),(26,42),(27,32),(28,44),(45,61),(47,63),(57,64),(59,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(5,15),(6,16),(7,13),(8,14),(9,62),(10,63),(11,64),(12,61),(29,33),(30,34),(31,35),(32,36),(37,41),(38,42),(39,43),(40,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2M | 4A | ··· | 4L | 4M | ··· | 4R |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.608C24 | C23.7Q8 | C23.8Q8 | C23.23D4 | C23.10D4 | C23.11D4 | C23.81C23 | C23.83C23 | C2×C4⋊D4 | C2×C22.D4 | C2×D4 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 3 | 1 |
Matrix representation of C23.608C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 4 | 0 | 0 | 0 | 0 |
3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,3,0,0,0,0,4,2,0,0,0,0,0,0,2,4,0,0,0,0,3,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,1,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,4,0,0,0,0,0,0,1,2,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C23.608C24 in GAP, Magma, Sage, TeX
C_2^3._{608}C_2^4
% in TeX
G:=Group("C2^3.608C2^4");
// GroupNames label
G:=SmallGroup(128,1440);
// by ID
G=gap.SmallGroup(128,1440);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,268,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=g^2=1,f^2=b*a=a*b,a*c=c*a,e*d*e=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations